Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Annu Rev Anim Biosci ; 11: 33-55, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2284296

ABSTRACT

Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.


Subject(s)
Communicable Diseases, Emerging , Virus Diseases , Animals , Humans , Animals, Domestic , Disease Reservoirs/veterinary , Zoonoses , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Virus Diseases/epidemiology , Virus Diseases/veterinary
2.
Rev Med Virol ; 32(4): e2326, 2022 07.
Article in English | MEDLINE | ID: covidwho-1976779

ABSTRACT

Zoonotic diseases are a burden on healthcare systems globally, particularly underdeveloped nations. Numerous vertebrate animals (e.g., birds, mammals and reptiles) serve as amplifier hosts or reservoirs for viral zoonoses. The spread of zoonotic disease is associated with environmental factors, climate change, animal health as well as other human activities including globalization, urbanization and travel. Diseases at the human-animal environment interface (e.g., zoonotic diseases, vector-borne diseases, food/water borne diseases) continue to pose risk to animals and humans with a great significant mortality and morbidity. It is estimated that of 1400 infectious diseases known to affect humans, 60% of them are of animal origin. In addition, 75% of the emerging infectious diseases have a zoonotic nature, worldwide. The one health concept plays an important role in the control and prevention of zoonoses by integrating animal, human, and environmental health through collaboration and communication among osteopaths, wildlife, physicians, veterinarians professionals, public health and environmental experts, nurses, dentists, physicists, biomedical engineers, plant pathologists, biochemists, and others. No one sector, organization, or person can address issues at the animal-human-ecosystem interface alone.


Subject(s)
Communicable Diseases, Emerging , One Health , Animals , Ecosystem , Humans , Mammals , Public Health , Zoonoses/epidemiology , Zoonoses/prevention & control
3.
Viruses ; 14(7)2022 07 11.
Article in English | MEDLINE | ID: covidwho-1928660

ABSTRACT

Urban environments represent unique ecosystems where dense human populations may come into contact with wildlife species, some of which are established or potential reservoirs for zoonotic pathogens that cause human diseases. Finding practical ways to monitor the presence and/or abundance of zoonotic pathogens is important to estimate the risk of spillover to humans in cities. As brown rats (Rattus norvegicus) are ubiquitous in urban habitats, and are hosts of several zoonotic viruses, we conducted longitudinal sampling of brown rats in Vienna, Austria, a large population center in Central Europe. We investigated rat tissues for the presence of several zoonotic viruses, including flaviviruses, hantaviruses, coronaviruses, poxviruses, hepatitis E virus, encephalomyocarditis virus, and influenza A virus. Although we found no evidence of active infections (all were negative for viral nucleic acids) among 96 rats captured between 2016 and 2018, our study supports the findings of others, suggesting that monitoring urban rats may be an efficient way to estimate the activity of zoonotic viruses in urban environments.


Subject(s)
Rodent Diseases , Viruses , Animals , Cities/epidemiology , Ecosystem , Humans , Rats , Rodent Diseases/epidemiology , Viruses/genetics , Zoonoses/epidemiology
4.
Memorias do Instituto Oswaldo Cruz ; 117, 2022.
Article in English | Scopus | ID: covidwho-1785238

ABSTRACT

Introduction. SARS-CoV-2 is a virus of zoonotic origin that can bind to ACE2 receptors on the cells of various mammals, including animals such as cats, dogs, ferrets, hyenas, coatis, otters, big cats, non-human primates, white-tailed deer, manatees, hippopotamuses, hamsters, and minks. Studies have shown that the virus can circulate among minks and Syrian hamsters, mutate, lead to animal-to-human zoonotic jump, and further onward spread between humans. The transmission of the virus from humans to cats is evident, but the virus's return to humans has not yet been demonstrated. Infection in pets is unusual, and there are few human-to-pet transmission reports worldwide. Objective. To describe the SARS-CoV-2 infection in Cordoba, Colombian Caribbean, a domestic animal. Methods. A cross-sectional molecular surveillance study was carried out, oral and rectal swabs were taken from cats and dogs living with people diagnosed with COVID-19. Results. SARS-CoV-2 was found in a cat living with a person with COVID-19. Genome sequencing showed that the B.1.111 lineage caused the infection in the cat. The owner's sample could not be sequenced. The lineage is predominant in Colombia, and this variant is characterized by the presence of the D614D and Q57H mutation. Conclusion.This is the first report on sequencing the SARS-CoV-2 genome in a cat in Colombia shows the importance of some interesting SARS-CoV-2 mutations in promoting the transmissibility of this new coronavirus in companion animals. Lack of information Human-to-cat or cat-to-human infection. © 2022, Fundacao Oswaldo Cruz. All rights reserved.

5.
Transbound Emerg Dis ; 69(5): e3244-e3249, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1765049

ABSTRACT

Following findings in Northern America of SARS-CoV-2 infections in white-tailed deer, there is concern of similar infections in European deer and their potential as reservoirs of SARS-CoV-2 including opportunities for the emergence of new variants. UK deer sera were collected in 2020-2021 from 6 species and a hybrid with 1748 tested using anti-spike and anti-nucleocapsid serology assays. No samples were positive on both assays nor by surrogate neutralization testing. There is no evidence that spill-over infections of SARS-CoV-2 occurred from the human population to UK deer or that SARS-CoV-2 has been circulating in UK deer (over the study period). Although it cannot be ruled out, study results indicate that spill-over infections followed by circulation of SARS-CoV-2 to the most common European deer species is small.


Subject(s)
COVID-19 , Deer , Animals , Animals, Wild , Antibodies, Viral , COVID-19/epidemiology , COVID-19/veterinary , COVID-19 Testing/veterinary , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Emerg Infect Dis ; 27(12): 3202-3205, 2021 12.
Article in English | MEDLINE | ID: covidwho-1613530

ABSTRACT

A case of human infection with influenza A(H1N1)pdm09 virus containing a nonstructural gene highly similar to Eurasian avian-like H1Nx swine influenza virus was detected in Denmark in January 2021. We describe the clinical case and report testing results of the genetic and antigenic characterizations of the virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Aged , Animals , Denmark/epidemiology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Reassortant Viruses/genetics , Swine
7.
Curr Top Med Chem ; 20(11): 915-962, 2020.
Article in English | MEDLINE | ID: covidwho-1453165

ABSTRACT

BACKGROUND: Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS: Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS: Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION: This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.


Subject(s)
Drug Delivery Systems/methods , Viral Vaccines/chemistry , Viral Zoonoses/diagnosis , Viral Zoonoses/prevention & control , Viral Zoonoses/therapy , Viruses/drug effects , Animals , Animals, Wild , Biosensing Techniques , Drug Carriers/chemistry , Drug Compounding , Drug Liberation , Humans , Nanomedicine , Nanoparticles/chemistry , Polymers/chemistry , Polymers/metabolism , Transfection , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL